In this work, a 3D pore network model (PNM) is introduced for modeling reaction-diffusion phenomena, with and without coupled heat transfer, in a spherical porous catalyst particle. The particle geometry is generated by packing thousands of microspheres inside a large sphere to represent the 3D geometry, porosity, and tortuosity of a spherical catalyst particle. A pore-network representation is extracted from this geometry, and a PNM for diffusion-reaction and heat conduction is constructed. This newly proposed particle-scale PNM allows for the application of realistic 3D nonuniform boundary conditions on the particle's surface, which is commonly encountered in slender packed-bed reactors. Concentration profiles inside the particle, and effectiveness of the reactions, is analyzed.
© 2024 The Authors. Published by American Chemical Society.