Abstract: Species often associate with specific habitat characteristics, resulting in patchy distributions, whereby they only occupy a proportion of available habitat. Understanding which characteristics species require is a valuable tool for informing conservation management. We investigated the associations of eleven species of day-flying Lepidoptera larvae and their foodplants with habitat characteristics within calcareous grassland reserves in Bedfordshire, UK, across two scales relevant to land managers and target species: the reserve (cardinal aspect, vegetation type) and foodplant patch scale (foodplant height and density). We investigated whether ecological traits (habitat specialism, as defined at a national-scale, and overwintering life stage) influenced the strength of associations. At the reserve scale, we found variation in associations with habitat characteristics across species, with species that overwinter at non-adult life stages having more restricted associations, indicating that they may be more vulnerable to environmental change. Associations were generally stronger with vegetation type than aspect, which can be manipulated more easily by land managers. Seven species had similar associations with habitat characteristics to their foodplants, implying that management to benefit foodplants will also benefit larvae. However, the remaining four species had different associations to their foodplants, and may require alternative management approaches. At the foodplant patch scale, four species were associated with foodplant characteristics, which could be used to inform effective fine-scale management.
Implications for insect conservation: Implications for insect conservation: Diverse habitat associations imply that topographic and vegetation variation are valuable for supporting diverse assemblages of butterflies and their foodplants.
Supplementary information: The online version contains supplementary material available at 10.1007/s10841-024-00554-7.
Keywords: Butterfly; Climate change; Habitat preference; Habitat use; Larva; Lepidoptera.
© The Author(s) 2024.