Scanning ion conductance microscopy (SICM) is a powerful surface imaging tool used in the electrolytic environment. Tip-enhanced Raman spectroscopy (TERS) can give more information in addition to the morphology provided by the SICM by utilizing label-free Raman spectroscopy aided by the localized plasmonic enhancement from the metal-coated probes. In this study, the integration of SICM with TERS is demonstrated through employing a silver-coated plasmonic nanopipette. Leveraging a two-dimensional (2D) molybdenum disulfide (MoS2) as a model system, the SICM-TERS enhancement factor was estimated to be ∼105, supported by finite-difference time-domain (FDTD) simulation. Moreover, the subnanometer distance dependence SICM-TERS study reveals the tensile stress and structural changes caused by the nanopipette. These findings illustrate the potential of SICM-TERS for providing comprehensive morphological and chemical insights into electrolytic environments, paving the way for future investigations of electrocatalytic and biological systems.
Keywords: Plasmonic Sensing; Scanning-Ion Conductance Microscopy; Tip-Enhanced Raman Spectroscopy; Two-Dimensional Materials.