Deep learning reconstruction of diffusion-weighted brain MRI for evaluation of patients with acute neurologic symptoms

Sci Rep. 2024 Oct 21;14(1):24761. doi: 10.1038/s41598-024-75011-1.

Abstract

Purpose: We aimed to evaluate whether the deep-learning (DL) accelerated diffusion weighted image (DWI) is clinically feasible for evaluating patients with acute neurologic symptoms, regarding its shorter study time and acceptable image quality.

Materials and methods: In this retrospective study, brain images obtained at DWI with a b-value of 0 s/mm2 and DWI with a b-value of 1000 s/mm2 (DWI 1000) from 321 consecutive patients with acute stroke-like symptom were reconstructed with and without DL algorithm. We compare the diagnostic performance between DL-DWI and conventional DWI for detecting brain lesions, including acute infarction. We assessed the diagnostic accuracy of conventional DWI and DL-DWI and compared the results. Qualitative analysis based on image quality was assessed and compared using a five-point visual scoring system. Apparent diffusion coefficients (ADCs) from DWI with and without DL were also compared.

Results: The mean acquisition time for the DL-DWI (49 s) was significantly shorter (P < 0.001) than conventional DWI (165 s). Both DWI with and without DL showed similar performance in diagnosing brain lesions especially sensitivity (98.8% in both DWI and DL-DWI) and specificity (99.5% in both DWI and DL-DWI). Overall image quality, gray-white matter and deep gray matter differentiation of two sequences were similar. DL DWI showed more artifacts than DWI. Lesion conspicuity, especially smaller than 5 mm, was better with DL DWI than conventional DWI (p = 0.03). ADC values of white matter, deep gray matter, and pons with DL were lower than conventional DWI.

Conclusions: Compared to conventional DWI, DL-DWI achieved comparable image quality and brain lesion visualization for acute neurological symptoms, with a significantly shorter scan time.

Keywords: Acute infarction; Brain; Deep learning reconstruction; Diffusion weighted image; Magnetic resonance imaging.

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Brain* / diagnostic imaging
  • Brain* / pathology
  • Deep Learning*
  • Diffusion Magnetic Resonance Imaging* / methods
  • Female
  • Humans
  • Image Interpretation, Computer-Assisted / methods
  • Image Processing, Computer-Assisted / methods
  • Male
  • Middle Aged
  • Retrospective Studies
  • Stroke / diagnostic imaging