With the aging population, the incidence of degenerative diseases such as dementia and arthritis is on the rise. To combat these diseases, cell therapies using induced pluripotent stem cells (iPSCs) are being developed worldwide. However, challenges such as high development costs and immune compatibility persist. Thus, methods such as generating patient-specific iPSCs or genetically edited iPSCs with deleted immune-related genes are being researched. Applying these approaches is limited due to high cost and safety concerns of gene editing. Therefore, we focused on an alternative method using human leukocyte antigen (HLA)-homozygous cell lines, which could overcome immune rejection issues economically. We investigated diseases that could potentially be treated with cell therapy and identified which HLA-homozygous cell lines could be most effectively used for the efficient production of therapeutic cell lines. The results of the study showed that cell therapy could be applied to a wide range of diseases, and expanding the population that can benefit from HLA-homozygous iPSC lines could help popularize these treatment methods. We highlight the necessity of a global HLA-homozygous iPSC bank.
Keywords: cell therapy; haplotype; human leukocyte antigen; immune compatibility; induced pluripotent stem cells.