Venous leg ulcers (VLUs) represent one of the most prevalent types of chronic wounds characterised by perturbed microbiome and biofilm-forming bacteria. As one of the most abundant skin-commensal, Staphylococcus epidermidis is known as beneficial for the host, however, some strains can form biofilms and hinder wound healing. In this study, S. epidermidis distribution in VLUs and associated resistome were analysed in ulcer tissue from patients. Virulence of S. epidermidis isolates from VLUs were evaluated by whole genome sequencing, antimicrobial susceptibility testing, in vitro biofilm and binding assays, and assessment of biofilm-forming capability and pro-inflammatory potential using human ex vivo wound model. We demonstrated that S. epidermidis isolates from VLUs inhibit re-epithelialization through biofilm-dependent induction of IL-1β, IL-8, and IL-6 which was in accordance with impaired healing outcomes observed in patients. High extracellular matrix binding ability of VLU isolates was associated with antimicrobial resistance and expression levels of the embp and sdrG, responsible for bacterial binding to fibrinogen and fibrin, respectively. Finally, we showed that S. epidermidis from VLUs demonstrate pathogenic features with ability to impair healing which underscores the emergence of treatment-resistant virulent lineages in patients with chronic ulcers.
Keywords: infection; keratinocytes; translational research; venous leg ulcer; wound healing.
© 2024 The Author(s). Wound Repair and Regeneration published by Wiley Periodicals LLC on behalf of The Wound Healing Society.