Distinguishing between primary (PID) and secondary (SID) immunodeficiencies, particularly in relation to hematological B-cell lymphoproliferative disorders (B-CLPD), poses a major clinical challenge. We aimed to analyze and define the clinical and laboratory variables in SID patients associated with B-CLPD, identifying overlaps with late-onset PIDs, which could potentially improve diagnostic precision and prognostic assessment. We studied 37 clinical/laboratory variables in 151 SID patients with B-CLPD. Patients were classified as "Suspected PID Group" when having recurrent-severe infections prior to the B-CLPD and/or hypogammaglobulinemia according to key ESID criteria for PID. Bivariate association analyses showed significant statistical differences between "Suspected PID"- and "SID"-groups in 10 out of 37 variables analyzed, with "Suspected PID" showing higher frequencies of childhood recurrent-severe infections, family history of B-CLPD, significantly lower serum Free Light Chain (sFLC), immunoglobulin concentrations, lower total leukocyte, and switch-memory B-cell counts at baseline. Rpart machine learning algorithm was performed to potentially create a model to differentiate both groups. The model developed a decision tree with two major variables in order of relevance: sum κ + λ and history of severe-recurrent infections in childhood, with high sensitivity 89.5%, specificity 100%, and accuracy 91.8% for PID prediction. Identifying significant clinical and immunological variables can aid in the difficult task of recognizing late-onset PIDs among SID patients, emphasizing the value of a comprehensive immunological evaluation. The differences between "Suspected PID" and SID groups, highlight the need of early, tailored diagnostic and treatment strategies for personalized patient management and follow up.
Keywords: Artificial intelligence; B cell chronic lymphoproliferative disorders, secondary immunodeficiency; Clinical diagnosis; Early detection; Primary immunodeficiencies.
© 2024. The Author(s).