Tailoring Interlayer Microenvironment of 2D Layered Double Hydroxides for CO2 Reduction with Enhanced C2+ Production

Small. 2024 Oct 23:e2406906. doi: 10.1002/smll.202406906. Online ahead of print.

Abstract

Both the physicochemical properties of catalytic material and the structure of loaded catalyst layer (CL) on gas diffusion electrode (GDE) are of crucial importance in determining the conversion efficiency and product selectivity of carbon dioxide reduction reaction (CO2RR). However, the highly reducing reaction condition of CO2RR will lead to the uncontrollable structural and compositional changes of catalysts, making it difficult to tailor surface properties and microstructure of the real active species for favored products. Herein, the interlayer microenvironment of copper-based layered double hydroxides (LDHs) is rationally tuned by a facile ink solvent engineering, which affects both the surface characters and microstructure of CL on GDE, leading to distinct catalytic activity and product selectivity. According to series of in situ and ex situ techniques, the appropriate surface wettability and thickness of porous CL are found to play critical roles in controlling the local CO2 concentration and water dissociation steps that are key for hydrogenation during CO2RR, leading to a high Faradaic efficiency of 75.3% for C2+ products and a partial current density of 275 mA cm-2 at -0.8 V versus RHE. This work provides insights into rational design of efficient electrocatalysts toward CO2RR for multi-carbon generation.

Keywords: CO2 reduction reaction; ink solvent engineering; surface wettability; thickness of catalyst layer.