A series of eight nitroxide compounds (four substituted piperidines, three pyrrolidines and one oxo-piperidine) are found to undergo electron transfer to 2'-deoxyribose-peroxyl and the guanyl radical. One-electron oxidation potentials of the nitroxides to oxoammonium cations (oxoammonium reduction potential), E0', have been measured against a common redox indicator, chlorpromazine, and found to span the range 751 ± 15 mV to 973 ± 15 mV. Fast chemical reduction of the 2'-deoxyribose-peroxyl radical to the hydroperoxide, generated by •OH radical attack on 2-deoxyribose, dR, in oxygenated aqueous solution, is a redox-dependent reaction, with rate constants of 0.8-3.5 x 107 M-1 s-1.The guanyl radicals, produced upon one-electron oxidation of 2'-deoxyguanosine monophosphate, dG, by the selenite radical, SeO3•-, react with the nitroxides in a redox-independent reaction with diffusion rate constants of 1-2 x 108 M-1 s-1. These findings represent a possible antioxidant role for nitroxides in the fast chemical repair of DNA radicals, which is supported by an in vitro strand break study using a plasmid.
Keywords: 2-deoxyribose-peroxyl radical; Nitroxides; fast chemical repair; guanyl radical; redox potentials.