This work is based on probing photosensitization in carbon nanotubes (CNTs) by organotin(IV) compounds to fabricate a hybrid material with excellent photocatalytic activity and generation of reactive oxygen species. Two organotin(IV) compounds (compounds 1 and 2) were synthesized and characterized by spectroscopic and spectrometric studies, elemental analysis and single crystal X-ray diffraction followed by their impregnation inside the CNTs. The so obtained hybrid materials (1@CNT and 2@CNT) were characterized by FTIR, TGA, FE-SEM, HR-TEM, PXRD and XPS analysis, and assessed for photosensitization and generation of reactive oxygen species. The enhanced photocatalytic activity of the fabricated materials in comparison to bare CNTs is attributed to the reduction of band gap and suppression of rapid recombination rates due to the encapsulation of photogenerated electrons. The generation of reactive species in photocatalyst 1@CNT was validated by the degradation of Amoxicillin (AMX) under optimized conditions for catalytic dosage, H2O2 concentration, response time and pH. The material 1@CNT could degrade ca. 83% of AMX by generating free radicals (˙OH and ˙O2-) under visible light irradiation at pH 6 as investigated by UV-visible spectroscopy and supported by EPR and DFT studies. Furthermore, the structural stability and sustained photocatalytic properties of 1@CNT over four cycles highlight its potential as an eco-friendly solution for degrading environmental toxins.