Adaptive multi-epitope targeting and avidity-enhanced nanobody platform for ultrapotent, durable antiviral therapy

Cell. 2024 Nov 27;187(24):6966-6980.e23. doi: 10.1016/j.cell.2024.09.043. Epub 2024 Oct 23.

Abstract

Pathogens constantly evolve and can develop mutations that evade host immunity and treatment. Addressing these escape mechanisms requires targeting evolutionarily conserved vulnerabilities, as mutations in these regions often impose fitness costs. We introduce adaptive multi-epitope targeting with enhanced avidity (AMETA), a modular and multivalent nanobody platform that conjugates potent bispecific nanobodies to a human immunoglobulin M (IgM) scaffold. AMETA can display 20+ nanobodies, enabling superior avidity binding to multiple conserved and neutralizing epitopes. By leveraging multi-epitope SARS-CoV-2 nanobodies and structure-guided design, AMETA constructs exponentially enhance antiviral potency, surpassing monomeric nanobodies by over a million-fold. These constructs demonstrate ultrapotent, broad, and durable efficacy against pathogenic sarbecoviruses, including Omicron sublineages, with robust preclinical results. Structural analysis through cryoelectron microscopy and modeling has uncovered multiple antiviral mechanisms within a single construct. At picomolar to nanomolar concentrations, AMETA efficiently induces inter-spike and inter-virus cross-linking, promoting spike post-fusion and striking viral disarmament. AMETA's modularity enables rapid, cost-effective production and adaptation to evolving pathogens.

Keywords: COVID; IgM antibody; SARS-CoV-2; antibody engineering; antiviral therapy; broadly neutralizing antibodies; cryotomography; multi-specific antibodies; nanobody; virus cross-linking.

MeSH terms

  • Animals
  • Antibodies, Neutralizing / immunology
  • Antibodies, Neutralizing / therapeutic use
  • Antibodies, Viral / immunology
  • Antibodies, Viral / therapeutic use
  • Antibody Affinity
  • Antiviral Agents* / pharmacology
  • Antiviral Agents* / therapeutic use
  • COVID-19 / immunology
  • COVID-19 / therapy
  • COVID-19 / virology
  • COVID-19 Drug Treatment
  • Cryoelectron Microscopy
  • Epitopes* / chemistry
  • Epitopes* / immunology
  • Humans
  • Immunoglobulin M / immunology
  • Mice
  • SARS-CoV-2* / immunology
  • Single-Domain Antibodies* / chemistry
  • Single-Domain Antibodies* / immunology
  • Spike Glycoprotein, Coronavirus / chemistry
  • Spike Glycoprotein, Coronavirus / immunology
  • Spike Glycoprotein, Coronavirus / metabolism

Substances

  • Single-Domain Antibodies
  • Epitopes
  • Antiviral Agents
  • Antibodies, Viral
  • Antibodies, Neutralizing
  • Spike Glycoprotein, Coronavirus
  • Immunoglobulin M
  • spike protein, SARS-CoV-2