The purpose of this study is to investigate the effect of task constraints on the neurobiological systems while maintaining postural control under various sensory feedback manipulations in individuals with and without Chronic Ankle Instability (CAI). Forty-two physically active individuals, with and without CAI, were enrolled in a case-control study conducted at a biomechanics research laboratory. All participants underwent the Sensory Organization Test (SOT), which assesses individuals' ability to integrate somatosensory, visual, and vestibular feedback to maintain postural control in double-, uninjured-, and injured-limb stances under six different conditions in which variations in the sway-referenced support surface (platform) and visual surroundings, with and without vision, are manipulated to affect somatosensory and visual feedback. Center-of-Pressure (COP) path length was computed from raw data collected during trials of each SOT condition. Sample Entropy (SampEN) values were extracted from the COP path length time series to examine neurobiological systems complexity, with lower SampEN values indicating more predictable and periodic (rigid) neurobiological systems, while higher SampEN values indicate more unpredictable and random systems. The results show that specific task constraints affect the neurobiological systems. Specifically, individuals with CAI demonstrated reduced complexity (decreased SampEN values) in the neurobiological systems during the uninjured-limb stance when all sensory feedback was intact and during both uninjured- and injured-limb stances when they were forced to rely on vestibular feedback. These results highlight the interplay between sensory feedback and task constraints in individuals with CAI and suggest potential adaptations in the neurobiological systems involved in postural control.
Keywords: ankle sprains; nonlinear dynamics; postural control; sensory reweighting system; task constraints.