Background/Objectives: Colorectal cancer (CRC) is the third most diagnosed cancer globally. Radiotherapy is a common treatment strategy for patients but factors such as gene expressions and molecular mechanism effects may affect tumor radioresponse. The aim of this review is to systematically identify genes suggested to have molecular mechanism effects on the radioresponsiveness of CRC patients. Methods: By following the PRISMA guidelines, a comprehensive literature search was conducted on Pubmed, EMBASE and Cochrane Library. After exclusion and inclusion criteria sorting and critical appraisal for study quality, data were extracted from seven studies. A gene set analysis was conducted on reported genes. Results: From the seven studies, 56 genes were found to have an effect on CRC radioresponsiveness. Gene set analysis show that out of these 56 genes, 24 genes have roles in pathways which could affect cancer radioresponse. These are AKT1, APC, ATM, BRAF, CDKN2A, CTNNB1, EGFR, ERBB2, FLT3, KRAS, MET, mTOR, MYC, NFKB1, KRAS, PDGFRA, PIK3CA, PTEN, PTGS1, PTGS2, RAF1, RET, SMAD4 and TP53. The current project was conducted between the period May 2024 to August 2024. Conclusions: The current review systematically presented 56 genes which have been reported to be related to RT or CRT treatment effectiveness in rectal cancer patients. Gene set analysis shows that nearly half of the genes were involved in apoptosis, DNA damage response and repair, inflammation and cancer metabolism molecular pathways that could affect cancer radioresponse. The gene cohort identified in this study may be used as a foundation for future works focusing on the molecular mechanism of specific pathways contributing to the radioresponse of CRC.
Keywords: biomarkers; colorectal cancer; gene mutation; molecular mechanisms; radioresponse.