The use of CpGV strains as the basis for bioinsecticides is an effective and safe way to control Cydia pomonella. The research is aimed at the identification and study of new CpGV strains. Objects of identification and bioinformatic analysis: 18 CpGV strains. Sequencing was carried out on a NextSeq550. Genome assembly and annotation were carried out using Spades, Samtools 1.9, MinYS, Pilon, Gfinisher, Quast, and Prokka. Comparative genomic analysis was carried out in relation to the reference genome present in the «Madex Tween» strain-producer (biological standard) according to the average nucleotide identity (ANI) criterion. The presence/absence of IAP, cathepsin, MMP, and chitinase in the genetic sequences of the strains was determined using simply phylogeny. Entomopathogenic activity was assessed against C. pomonella according to the criterion of biological efficacy. Thus, molecular genetic identification revealed that 18 CpGV strains belong to a genus of Betabaculovirus. For all the strains under study ANI values of 99% or more were obtained, and the presence of the cathepsin, chitinase, IAP, and MMP genes was noted. The strains BZR GV 1, BZR GV 3, BZR GV 7, BZR GV 10, and BZR GV L-8 showed the maximum biological efficacy: 100% on the 15th day of observation. Strains BZR GV 4, BZR GV 8, and BZR GV 13 showed efficacy at the level of the «Madex Tween» preparation: 89.5% on the 15th day of observation. The strains with the highest mortality rate of the host insect were identified: BZR GV 9, BZR GV 10, BZR GV L-6, and BZR GV L-8.
Keywords: CpGV; Cydia pomonella; baculoviridae; entomopathogenic activity; granulovirus identification; virus insecticide.