The challenges and drawbacks of manual weeding and herbicide usage, such as inefficiency, high costs, time-consuming tasks, and environmental pollution, have led to a shift in the agricultural industry toward digital agriculture. The utilization of advanced robotic technologies in the process of weeding serves as prominent and symbolic proof of innovations under the umbrella of digital agriculture. Typically, robotic weeding consists of three primary phases: sensing, thinking, and acting. Among these stages, sensing has considerable significance, which has resulted in the development of sophisticated sensing technology. The present study specifically examines a variety of image-based sensing systems, such as RGB, NIR, spectral, and thermal cameras. Furthermore, it discusses non-imaging systems, including lasers, seed mapping, LIDAR, ToF, and ultrasonic systems. Regarding the benefits, we can highlight the reduced expenses and zero water and soil pollution. As for the obstacles, we can point out the significant initial investment, limited precision, unfavorable environmental circumstances, as well as the scarcity of professionals and subject knowledge. This study intends to address the advantages and challenges associated with each of these sensing technologies. Moreover, the technical remarks and solutions explored in this investigation provide a straightforward framework for future studies by both scholars and administrators in the context of robotic weeding.
Keywords: agriculture; digital; robotic weeding; robots; weed.