Dynamic DNA nanodevices, particularly DNA walkers, have proven to be versatile tools for target recognition, signal conversion, and amplification in biosensing. However, their ability to detect low-abundance analytes in complex biological samples is often compromised by limited amplification depth and severe signal leakage. To address these challenges, we developed a simple yet highly efficient strategy to engineer a self-replicating bipedal DNAzyme (SEDY) walker for sensitive and selective electrochemiluminescence (ECL) bioanalysis. Unlike conventional DNA walkers that are typically constructed by catalytic DNA assembly in a single direction, the SEDY walker integrates a self-replicating feedback mechanism that greatly enhances both the selectivity and sensitivity of bioanalysis. First, the SEDY walker is assembled through a target-triggered, enzyme-free, self-replicating catalytic approach, minimizing the risk of undesired side reactions and signal leakage by simplifying reactant complexity. Furthermore, the SEDY walker features newly exposed trigger sequences that facilitate its autonomous replication, leading to a robust and exponential amplification of its products. Our experiments demonstrate that the SEDY walker can sensitively and selectively detect acetamiprid by navigating specific probes within cross-shaped DNA orbits. The ECL biosensor offers a linear detection range from 1 × 10-15 M to 1 × 10-9 M, with a limit of detection as low as 5.8 × 10-16 M. We anticipate that the SEDY walker will be a powerful tool for detecting various analytes in biological applications.