Yinchenhao decoction (YCHD) is widely used in the treatment of damp-heat syndrome of chronic hepatitis B (CHB), but it remains unclear about the active compounds in YCHD and its potential mechanism for treating CHB. The purpose of this work is to evaluate the clinical efficacy of YCHD combined with nucleoside analogues (NAs) for the treatment of CHB. Besides, based on the exact clinical efficacy, we combined serum metabolomics and network pharmacology to screen differential metabolites and related pathways regulated by YCHD to investigate the possible mechanism for treating CHB. It revealed that NAs plus YCHD could significantly improve alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels, increase HBV-DNA negative rate (P<0.05), reduce the levels of inflammatory factors and LSM (both P<0.05), regulate lipids (P<0.05), and improve the symptoms of traditional Chinese medicine (TCM) (P<0.05) in CHB patients. YCHD was relatively safe. It showed 30 active compounds including chlorogenic acid, geniposide, emodin, quercetin, kaempferol, β-sitosterol and aloe emodin, and 115 key targets which were related to the regulation of lipids and reduction of oxidative stress related to the effect of YCHD in CHB in the network pharmacology analysis. We found 9 core targets and 4 key metabolites according to metabolomics, which were partly consistent with the network pharmacology findings. It proved that network pharmacology combined with metabolomics can well explain the "multi-component-multi-target" mechanism of complex TCM.
Keywords: Bioinformatics; Chronic hepatitis B; Metabolomics; Network pharmacology; Yinchenhao decoction.
Copyright © 2024 The Authors. Published by Elsevier B.V. All rights reserved.