Antimicrobial resistance (AMR) is a major threat to global health and resistant bacterial populations have been observed to develop and spread in and around wastewater. However, in vitro studies on AMR development are typically conducted in ideal media conditions which can differ in composition and nutrient density from wastewater. In this study, we compare the growth and AMR development of E. coli in standard LB broth to a synthetic wastewater recipe and autoclaved wastewater samples from the Massachusetts Water Resources Authority (MWRA). We found that synthetic wastewater and real wastewater samples both supported less bacterial growth compared to LB. Additionally, bacteria grown in synthetic wastewater and real wastewater samples had differing susceptibility to antibiotic pressure from Doxycycline, Ciprofloxacin, and Streptomycin. However, AMR development over time during continuous passaging under subinhibitory antibiotic pressure was similar in fold change across all media types. Thus, we find that while LB can act as a proxy for wastewater for AMR studies in E. coli, synthetic wastewater is a more accurate predictor of both E.coli growth and antibiotic resistance development. Moreover, we also show that antibiotic resistance can develop in real wastewater samples and components within wastewater likely have synergistic and antagonistic interactions with antibiotics.