Context: The dyes in the second near-infrared (NIR-II) region play a crucial role in advancing imaging technology. However, developing small-molecule dyes in NIR-II poses a significant bottleneck to meet the substantial demands in biological fields, which may be attributed to the lack of a rational design strategy. Herein, we designed a series of rhodamine analogs with more red-shifted emission by replacing the oxygen-bridge atom in xanthene-based dyes with -C(CH3)2, -Si(CH3)2, -SO2, and -P(O)Ph. We investigated the frontier molecular orbital, electrostatic potential surfaces, the interaction region indicator, electron-hole distribution, and absorption and emission spectrum of xanthene-based dyes using (time-dependent) density functional theory. Our results demonstrated that these designed small molecular dyes exhibit long emission wavelengths covering 1377-1809 nm. We expected these findings to enable the targeted design of long-wavelength rhodamines.
Method: Geometry optimization of dyes in the ground and excited states was carried out at ω-B97XD/Def2SVP level using Gaussian 16 A03. The absorption and emission wavelengths were evaluated using 13 functional, including TPSSH, O3LYP, B3LYP*, B3LYP, PBE0, MPW1B95, PBE-1/3, PBE38, MPWB1K, MN15, BHandHLYP, ω-B97XD, and CAM-B3LYP.
Keywords: Density functional theory; Molecular design; NIR-II emission; Xanthene dyes.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.