Fabrication of Novel Porous Nano-pesticides by Modifying MPN onto Cu-TCPP MOFs to Enhance Bactericidal Efficacy and Modulate Its Bioavailability

Nano Lett. 2024 Nov 13;24(45):14405-14411. doi: 10.1021/acs.nanolett.4c04277. Epub 2024 Oct 29.

Abstract

Nano-pesticides have attracted much attention in the field of agriculture, due to existing problems such as decreased bactericidal effect and poor adhesion. An environmentally friendly metal porphyrin (Cu-TCPP)-based nanocarrier pesticide release of diniconazole (DIN) was designed to enhance bactericidal efficacy and modulate its bioavailability in a multidimensional manner by constructing a metal phenolic network (MPN) encapsulation. The introduction of the MPN prevents the DIN from prematurely escaping from the Cu-TCPP@DIN@MPN in the environment and gives it strong interfacial adhesion to resist rain washing. The resulting Cu-TCPP@DIN@MPN nanoparticles (NPs) showed a lamellar stacked embedded structure, which improved the inhibition of Fusarium oxysporum (90.9%) and photostability (67.2%), while they do not affect healthy plant growth and meet the relevant food safety requirements for DIN residues. This work provides new ideas for the development of superior photostable, adhesive, rainwater erosion-resistant, and sustainable nanocarrier pesticides.

Keywords: bactericidal efficacy; bioavailability; metal phenolic network; porous nano-pesticides.

MeSH terms

  • Anti-Bacterial Agents* / chemistry
  • Anti-Bacterial Agents* / pharmacology
  • Biological Availability
  • Copper / chemistry
  • Copper / pharmacology
  • Fusarium* / drug effects
  • Metal-Organic Frameworks / chemistry
  • Metal-Organic Frameworks / pharmacology
  • Nanoparticles / chemistry
  • Pesticides / chemistry
  • Pesticides / pharmacology
  • Porosity
  • Triazoles / chemistry
  • Triazoles / pharmacology

Substances

  • Anti-Bacterial Agents
  • Metal-Organic Frameworks
  • Pesticides
  • Copper
  • Triazoles

Supplementary concepts

  • Fusarium oxysporum