Amidst the therapeutic quandaries associated with triple-negative breast cancer (TNBC), an aggressive malignancy distinguished by its immune resistance and limited treatment avenues, the urgent need for innovative solutions is underscored. To conquer the dilemma, we present a groundbreaking approach that ingeniously employs DNA-fragments-containing exosomes (DNA-Exo) and the concept of "biological logic-gates" to achieve precise homing and controlled selective activation of ferroptosis and stimulator interferon genes (STING) pathways. Leveraging insights from our previous research, a nano-Trojan-horse, Fe0@HMON@DNA-Exo, is engineered via in situ Fe0 synthesis within the glutathione (GSH)-responsiveness degradable hollow mesoporous organosilica nanoparticles (HMON) and subsequently enveloped in DNA-Exo derived from 7-ethyl-10-hydroxycamptothecin (SN38)-treated 4T1 cells. Emphasizing the precision of our approach, the DNA-Exo ensures specific 'homing' to TNBC cells, rendering a targeted delivery mechanism. Concurrently, the concept of "biological logic-gates" is employed to dictate a meticulous and selective activation of STING in antigen-presenting cells (APCs) under OR logic-gating with robust immune response and Fe0-based ferroptosis in TNBC cells under AND logic-gating with reactive oxygen species (ROS) storm generation. In essence, our strategy exhibits great potential in transforming the "immunologically cold" nature of TNBC, enabling precise control over cellular responses, illuminating a promising therapeutic paradigm that is comprehensive and productive in pursuing precision oncology and paving the way for personalized TNBC therapies.
Keywords: Biological logic-gate; Ferroptosis; Stimulator interferon genes (STING) pathway; Triple-negative breast cancer (TNBC); Trojan-horse strategy.
Copyright © 2024 Elsevier Ltd. All rights reserved.