Investigating the role of RNA-binding protein Ssd1 in aneuploidy tolerance through network analysis

RNA. 2024 Dec 16;31(1):100-112. doi: 10.1261/rna.080199.124.

Abstract

RNA-binding proteins (RBPs) play critical cellular roles by mediating various stages of RNA life cycles. Ssd1, an RBP with pleiotropic effects, has been implicated in aneuploidy tolerance in Saccharomyces cerevisiae but its mechanistic role remains unclear. Here, we used a network-based approach to inform on Ssd1's role in aneuploidy tolerance, by identifying and experimentally perturbing a network of RBPs that share mRNA targets with Ssd1. We identified RBPs whose bound mRNA targets significantly overlap with Ssd1 targets. For 14 identified RBPs, we then used a genetic approach to generate all combinations of genotypes for euploid and aneuploid yeast with an extra copy of chromosome XII, with and without SSD1 and/or the RBP of interest. Deletion of 10 RBPs either exacerbated or alleviated the sensitivity of wild-type and/or ssd1Δ cells to chromosome XII duplication, in several cases indicating genetic interactions with SSD1 in the context of aneuploidy. We integrated these findings with results from a global overexpression screen that identified genes whose duplication complements ssd1Δ aneuploid sensitivity. The resulting network points to a subgroup of proteins with shared roles in translational repression and P-body formation, implicating these functions in aneuploidy tolerance. Our results reveal a role for new RBPs in aneuploidy tolerance and support a model in which Ssd1 mitigates translation-related stresses in aneuploid cells.

Keywords: P-body; RNA-binding protein; Ssd1; aneuploidy; translational regulation.

MeSH terms

  • Aneuploidy*
  • Gene Expression Regulation, Fungal
  • Gene Regulatory Networks
  • RNA, Messenger / genetics
  • RNA, Messenger / metabolism
  • RNA-Binding Proteins* / genetics
  • RNA-Binding Proteins* / metabolism
  • Saccharomyces cerevisiae Proteins* / genetics
  • Saccharomyces cerevisiae Proteins* / metabolism
  • Saccharomyces cerevisiae* / genetics
  • Saccharomyces cerevisiae* / metabolism

Substances

  • Saccharomyces cerevisiae Proteins
  • RNA-Binding Proteins
  • Ssd1 protein, S cerevisiae
  • RNA, Messenger