Machine learning-based personalized composite score dissects risk and protective factors for cognitive and motor function in older participants

Front Aging Neurosci. 2024 Oct 15:16:1447944. doi: 10.3389/fnagi.2024.1447944. eCollection 2024.

Abstract

Introduction: With age, sensory, cognitive, and motor abilities decline, and the risk for neurodegenerative disorders increases. These impairments influence the quality of life and increase the need for care, thus putting a high burden on society, the economy, and the healthcare system. Therefore, it is important to identify factors that influence healthy aging, particularly ones that are potentially modifiable through lifestyle choices. However, large-scale studies investigating the influence of multi-modal factors on a global description of healthy aging measured by multiple clinical assessments are sparse.

Methods: We propose a machine learning model that simultaneously predicts multiple cognitive and motor outcome measurements on a personalized level recorded from one learned composite score. This personalized composite score is derived from a large set of multi-modal components from the TREND cohort, including genetic, biofluid, clinical, demographic, and lifestyle factors.

Results: We found that a model based on a single composite score was able to predict cognitive and motor abilities almost as well as a classical flexible regression model specifically trained for each single clinical score. In contrast to the flexible regression model, our composite score model is able to identify factors that globally influence cognitive and motoric abilities as measured by multiple clinical scores. The model identified several risk and protective factors for healthy aging and recovered physical exercise as a major, modifiable, protective factor.

Discussion: We conclude that our low parametric modeling approach successfully recovered known risk and protective factors of healthy aging on a personalized level while providing an interpretable composite score. We suggest validating this modeling approach in other cohorts.

Keywords: aging; cognition; healthy; machine learning; physical activity.

Grants and funding

The author(s) declare financial support was received for the research, authorship, and/or publication of this article. This work was supported by the BMBF-funded de.NBI Cloud within the German Network for Bioinformatics Infrastructure (de.NBI) (031A532B, 031A533A, 031A533B, 031A534A, 031A535A, 031A537A, 031A537B, 031A537C, 031A537D, 031A538A). This work was further partially supported from the Else Kröner-Fresenius-Stiftung within the Project “ClinBrAIn: Künstliche Intelligenz für Klinische Hirnforschung” (KB and FS). FS was supported by the Carl-Zeiss-Stiftung and acknowledges the support of the DFG Cluster of Excellence “Machine Learning – New Perspectives for Science”, EXC 2064/1, project number 390727645. KB received support by the DFG for "Psychosoziale und gesundheitsbezogene Auswirkungen der SARS-CoV-2 Pandemie, Antikörper und Impfung bei älteren Menschen (CORO-TREND)”. We acknowledge support from the Open Access Publishing Fund of the University of Tübingen.