Equine bone marrow-derived mesenchymal stromal cells reduce established S. aureus and E. coli biofilm matrix in vitro

PLoS One. 2024 Oct 31;19(10):e0312917. doi: 10.1371/journal.pone.0312917. eCollection 2024.

Abstract

Biofilms reduce antibiotic efficacy and lead to complications and mortality in human and equine patients with orthopedic infections. Equine bone marrow-derived mesenchymal stromal cells (MSC) kill planktonic bacteria and prevent biofilm formation, but their ability to disrupt established orthopedic biofilms is unknown. Our objective was to evaluate the ability of MSC to reduce established S. aureus or E. coli biofilms in vitro. We hypothesized that MSC would reduce biofilm matrix and colony-forming units (CFU) compared to no treatment and that MSC combined with the antibiotic, amikacin sulfate, would reduce these components more than MSC or amikacin alone. MSC were isolated from 5 adult Thoroughbred horses in antibiotic-free medium. 24-hour S. aureus or E. coli biofilms were co-cultured in triplicate for 24 or 48 hours in a transwell plate system: untreated (negative) control, 30 μg/mL amikacin, 1 x 106 passage 3 MSC, and MSC with 30 μg/mL amikacin. Treated biofilms were photographed and biofilm area quantified digitally. Biomass was quantified via crystal violet staining, and CFU quantified following enzymatic digestion. Data were analyzed using mixed model ANOVA with Tukey post-hoc comparisons (p < 0.05). MSC significantly reduced S. aureus biofilms at both timepoints and E. coli biofilm area at 48 hours compared to untreated controls. MSC with amikacin significantly reduced S. aureus biofilms versus amikacin and E. coli biofilms versus MSC at 48 hours. MSC significantly reduced S. aureus biomass at both timepoints and reduced S. aureus CFU at 48 hours versus untreated controls. MSC with amikacin significantly reduced S. aureus biomass versus amikacin at 24 hours and S. aureus and E. coli CFU versus MSC at both timepoints. MSC primarily disrupted the biofilm matrix but performed differently on S. aureus versus E. coli. Evaluation of biofilm-MSC interactions, MSC dose, and treatment time are warranted prior to testing in vivo.

MeSH terms

  • Amikacin* / pharmacology
  • Animals
  • Anti-Bacterial Agents / pharmacology
  • Biofilms* / drug effects
  • Biofilms* / growth & development
  • Bone Marrow Cells / cytology
  • Coculture Techniques
  • Escherichia coli* / drug effects
  • Escherichia coli* / physiology
  • Horses
  • Mesenchymal Stem Cells* / cytology
  • Mesenchymal Stem Cells* / drug effects
  • Staphylococcus aureus* / drug effects
  • Staphylococcus aureus* / physiology

Substances

  • Amikacin
  • Anti-Bacterial Agents

Grants and funding

This work was supported by the Morris Animal Foundation Training Fellowship D21EQ-401. The URL for Morris Animal Foundation is https://www.morrisanimalfoundation.org/. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.