Microbial cooperation determines the efficacy of wastewater biological treatment, and the adaptability of microorganisms to environmental stresses varies. Recently, extensive use of hormones results in their inevitable discharge into aquatic environment. Therefore, mainstream and sidestream anammox reactors were constructed in this study to evaluate their removal performance of progesterone and nitrogen simultaneously, the adaptability of anammox consortia to progesterone stress and the corresponding regulation mechanism. Both anammox processes had the resilience to progesterone stress, with the average nitrogen removal efficiency exceeding 90 %. At the same time, progesterone removal efficiency also exceeded 70 %. In contrast, microbial community in the mainstream reactors was more susceptible to progesterone interference. The adaptation of anammox consortia mainly depended on microbial cooperation and molecular regulation. Initially, bacteria secreted more extracellular polymeric substances to detain progesterone. Biodegradation also contributed to mitigating the side effect of progesterone, which was demonstrated by the proliferation of potential degrading bacteria such as Bacillus salacetis, Bacillus wiedmannii and Rhodococcus erythropolis. In addition, the enhancement of microbial interaction intensity drove their cooperation to enhance adaptability and maintain stable performance. Combined with metagenomic and metatranscriptomic analyses, such microbial adaptability was enhanced through molecular regulations, including the energy redistribution for amino acid synthesis and alteration of key metabolic pathways. Related functional gene expressions and microbial interactions were, in turn, regulated by quorum sensing. This work verifies the feasibility of anammox process in hormone-containing wastewater treatment and provides a holistic understanding of molecular mechanism of microbial interaction and coadaptation to stress.
Keywords: Adaptation mechanism; Anammox; Mainstream; Microbial interaction; Progesterone; Sidestream.
Copyright © 2024 Elsevier Ltd. All rights reserved.