The degradation of synthetic dye wastewater is important for green chemistry and cost-effectiveness. In this study, we developed Fe3O4@C-laccase (laccase immobilized on Fe3O4@C nanoparticles) for photothermal degradation of high concentration of triphenylmethane dye wastewater. The Fe3O4@C-laccase possessed superior pH and thermal stabilities, as well as excellent tolerance to organic solvents, inhibitors, and metal ions. Laccase activity assays revealed that the activity recovery was approximately 118.2 %. Furthermore, the Fe3O4@C-laccase presented rapid and sustainable photothermal degradation capabilities to triphenylmethane dye wastewater. The initial removal efficiencies of 400 mg/L malachite green (MG), 400 mg/L brilliant green (BG), 100 mg/L crystal violet (CV), and 600 mg/L mixed dye (MG:BG:CV = 1:1:1) wastewater were approximately 99.8 %, 99.9 %, 96.4 % and 99.2 % by 60 min treatment, respectively. After undergoing 10 batches of reuse, the photothermal degradation efficiencies of the triphenylmethane dye wastewater remained consistently high, at about 99.3 %, 97.4 %, 94.0 %, and 95.1 %, respectively. The excellent photothermal degradation properties indicate that the Fe3O4@C-laccase holds promise for addressing high concentration of textile wastewater in various applications.
Keywords: Catalytic activity; Fe(3)O(4)@C-laccase; Photothermal degradation; Triphenylmethane dye wastewater.
Copyright © 2024 Elsevier B.V. All rights reserved.