Methanogens play an important role in the demethylation of arsenic. Soil amendments that inhibit methanogens can increase dimethylarsinic acid (DMA), which is responsible for straighthead disease in rice. A decrease in methanogenesis caused by silicate fertilizer may increase DMA concentration in paddy soils and rice grains; the relationship between these two factors and their impacts on DMA concentration remains unclear. We applied silicate fertilizer (2 Mg ha-1) to japonica and indica rice grown on arsenic-spiked soils and found a simultaneous reduction in methane emissions and pore-water DMA concentration, compared to no-silicate fertilization. Gene and transcript copies of mcrA and arsM, as well as dominant methanogens and arsenic-methylating microbes decreased significantly with silicate fertilization. However, the sulfate-reducing bacteria and the gene and transcript copies of dsrB did not change significantly in response to the application of silicate fertilizer to paddy soils. The abundance of arsenic methylating microbes was significantly and positively correlated with the abundance of methanogens, but not with the abundance of sulfate-reducing bacteria. Methylomonas and Methylobacter, which harbor the arsM gene, were suppressed under silicate fertilization, suggesting that they have the potential to methylate As and play a crucial role in reducing pore-water DMA in As-enriched flooded paddy soils. Increasing Fe concentration, soil pH, and Eh value decreased pore-water DMA concentration, while decreasing arsenite concentration, arsM and mcrA gene abundance decreased it. While silicate fertilization decreased arsenite and DMA concentrations in pore-water, it had no significant effect on rice DMA content, but significantly decreased arsenite content. Results reveal that methanogens and arsenic-methylating microbes have a synergistic relationship under silicate fertilization that facilitates a significant reduction in methane emissions and DMA concentration in As-enriched paddy soils.
Keywords: Arsenic cycling; Methane emission; Silicate fertilization; Straighthead disease.
Copyright © 2024 Elsevier Inc. All rights reserved.