Rod photoreceptor neurons in the retina detect scotopic light through the visual pigment rhodopsin (Rho) in their outer segments (OS). Efficient Rho trafficking to the OS through the inner rod compartments is critical for long-term rod health. Given the importance of protein trafficking to the OS, less is known about the trafficking of rod synaptic proteins. Furthermore, the subcellular impact of Rho mislocalization on rod synapses (i.e., "spherules") has not been investigated. In this study we used super-resolution and electron microscopies, along with proteomics, to perform a subcellular analysis of Rho synaptic mislocalization in P23H-Rho-RFP mutant mice. We discovered that mutant P23H-Rho-RFP protein mislocalized in distinct ER aggregations within the spherule cytoplasm, which we confirmed with AAV overexpression. Additionally, we found synaptic protein abundance differences in P23H-Rho-RFP mice. By comparison, Rho mislocalized along the spherule plasma membrane in WT and rd10 mutant rods, in which there was no synaptic protein disruption. Throughout the study, we also identified a network of ER membranes within WT rod presynaptic spherules. Together, our findings indicate that photoreceptor synaptic proteins are sensitive to ER dysregulation.
Keywords: mislocalization; photoreceptors; retina; rhodopsin; super-resolution; synapse.