Vapor Infiltration Synthesis of Indium Sulfide Magic Size Cluster

ACS Nano. 2024 Nov 12;18(45):31372-31380. doi: 10.1021/acsnano.4c10943. Epub 2024 Nov 1.

Abstract

The energetically favorable formation of atomically precise clusters, known as magic size clusters, in the solution phase enables a precision nanoscale synthesis with exquisite uniformity. We report the synthesis of magic size clusters via vapor infiltration of atomic layer deposition precursors directly in a polymer thin film. Sequential infiltration of trimethylindium vapor and hydrogen sulfide gas into poly(methyl methacrylate) leads to the formation of clusters with uniform properties consistent with a magic size cluster─In6S6(CH3)6. While an increase in cluster size might be expected with additional sequential infiltration cycles of the reactive In and S precursors, uniform properties consistent with magic size clusters form in multiple polymers under a range of processing conditions. Ultraviolet-visible absorption spectra of In6S6(CH3)6 are largely independent of the number of sequential infiltration cycles and exhibit air stability, both of which are attributed to an energetically favorable synthetic pathway that is evaluated with density functional theory.

Keywords: atomic layer deposition; cluster; metal chalcogenide; semiconductor; sequential infiltration synthesis.