The feruloylated sugar chain in sugar beet pectin (SBP) is a natural polyphenol-polysaccharide complex. Its low abundance often leads to be neglected, thereby hindering its bioactivity and mechnism research. In this study, SBP-3 A, a novel feruloylated polysaccharide fragment, was isolated from sugar beet pectin utilizing enzymatic digestion. The presence of ferulic acid on SBP-3 A was confirmed through high-performance liquid chromatography (HPLC), with a mass fraction of 22.5 μg/mg. The average molecular weight was determined to be 33.31 kDa. Methylation analysis, and nuclear magnetic resonance (NMR) spectra revealed that SBP-3 A is a heteroglycan with the main chain structure of →2)-α-Rhap-(1 → 4)-α-GalpA-(1 → 2)-α-Rhap-(1→, and the branched chain structure of ferulic acid (FA) → 3,4)-β-Galp-(1 → 2,4)-α-Rhap-(1→. Subsequently, the antioxidant activity of SBP-3 A was evaluated using the Caenorhabditis elegans (C. elegans). SBP-3 A improved antioxidant enzymes and non-enzymatic defense system, decreased reactive oxygen species levels, and up-regulated the mRNA expression of sod-3, skn-1, and daf-16, while down-regulated the expression of age-1 in C. elegans. Moreover, SBP-3 A modulated the gut flora by favorably affecting the abundances of Lactobacillus, Ligilactobacillus, and Akkermansia, thereby enhancing antioxidant capacity in C. elegans. Consequently, the aforementioned findings support the potential application of SBP-3 A as a functional food for treating oxidative stress-related illnesses.
Keywords: Antioxidant; Caenorhabditis elegans; Gut microbiota; Structure characterization; Sugar beet pectin.
Copyright © 2024 Elsevier Ltd. All rights reserved.