This study describes the development of a simple, disposable, and eco-friendly electrochemical immunosensor for rapid detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Electrochemical devices were manufactured by stencil-printing using low-cost materials such as polyester sheets, graphite flakes, and natural resin. The immunosensor comprises gold nanoparticles stabilized with cysteamine, glutaraldehyde, anti-SARS-CoV-2 S protein monoclonal antibody (Ab1) as the biological receptor, and bovine serum albumin as a protective layer. The COVID-19 diagnostic was based on rapid square wave voltammetry measurements (15 min) using [Fe(CN)6]3-/4- as a redox probe. The method presented a linear response in the concentration range from 250 pg mL-1 to 20 μg mL-1 S protein, with a limit of detection of 36.3 pg mL-1. The proposed immunosensor was stable for up to two weeks when stored at 4 °C and it demonstrated excellent clinical performance in diagnosing COVID-19 when applied to a panel of 44 undiluted swab samples collected from symptomatic patients. In comparison with results obtained through the quantitative reverse transcription polymerase chain reaction method, the proposed immunosensor offered 100 % accuracy, thus emerging as a powerful alternative candidate for routine and decentralized testing, which can be helpful in controlling the COVID-19 outbreak.
Keywords: COVID-19 diagnostics; Chemical sensors; Disposable biosensors; Nasopharyngeal samples; Point-of-care testing; Thermoplastic polymer.
Copyright © 2023 Elsevier B.V. All rights reserved.