The effect of phenotyping, adult selection, and mating strategies on genetic gain and rate of inbreeding in black soldier fly breeding programs

Genet Sel Evol. 2024 Nov 4;56(1):71. doi: 10.1186/s12711-024-00938-y.

Abstract

Background: The aim of this study was to compare genetic gain and rate of inbreeding for different mass selection breeding programs with the aim of increasing larval body weight (LBW) in black soldier flies. The breeding programs differed in: (1) sampling of individuals for phenotyping (either random over the whole population or a fixed number per full sib family), (2) selection of adult flies for breeding (based on an adult individual's phenotype for LBW or random from larvae preselected based on LBW), and (3) mating strategy (mating in a group with unequal male contributions or controlled between two females and one male). In addition, the numbers of phenotyped and preselected larvae were varied. The sex of an individual was unknown during preselection and females had higher LBW, resulting in more females being preselected.

Results: Selecting adult flies based on their phenotype for LBW increased genetic gain by 0.06 genetic standard deviation units compared to randomly selecting from the preselected larvae. Fixing the number of phenotyped larvae per family increased the rate of inbreeding by 0.15 to 0.20% per generation. Controlled mating compared to group mating decreased the rate of inbreeding by 0.02 to 0.03% per generation. Phenotyping more than 4000 larvae resulted in a lack of preselected males due to the sexual dimorphism. Preselecting both too few and too many larvae could negatively impact genetic gain, depending on the breeding program.

Conclusions: A mass selection breeding programs in which the adult fly is selected based on their larval phenotype, breeding animals mate in a group and sampling larvae for phenotyping at random over the whole population is recommended for black soldier flies, considering the positive effect on rates of genetic gain and inbreeding. The number of phenotyped and preselected larvae should be calculated based on the expected female weight deviation to ensure sufficient male and female candidates are selected.

MeSH terms

  • Animals
  • Body Weight / genetics
  • Breeding / methods
  • Female
  • Inbreeding*
  • Larva / genetics
  • Male
  • Phenotype*
  • Selection, Genetic*
  • Sexual Behavior, Animal