Prospects for gene therapy in polycystic kidney disease

Curr Opin Nephrol Hypertens. 2025 Jan 1;34(1):121-127. doi: 10.1097/MNH.0000000000001030. Epub 2024 Oct 3.

Abstract

Purpose of review: We aim to provide an updated perspective on the recent advancements in gene therapy for polycystic kidney disease (PKD), a genetic disorder with significant morbidity. Given the rapid evolution of gene therapy technologies and their potential for treating inherited diseases, this review explores the therapeutic prospects and challenges in applying these technologies to PKD.

Recent findings: Significant progress has been made in understanding the genetic underpinnings of PKD, making it a prime candidate for gene therapy. Re-expression of the PKD genes, treatment with the C-terminal tail of polycystin 1 protein and antagomir therapy against miR-17 have shown promise in reducing cyst formation and preserving kidney function. The rapid development of gene-editing tools, antisense oligonucleotide-based strategies, programmable RNA, and advanced gene delivery systems has opened new possibilities for PKD treatment. However, challenges such as off-target effects, delivery efficiency, and long-term safety remain significant barriers to clinical application.

Summary: Current research highlights the transformative potential of gene therapy for PKD. Ongoing studies are crucial to overcoming existing challenges and translating these findings into clinical practice. We highlight the need for multidisciplinary efforts to optimize gene-editing technologies and ensure their safety and efficacy in treating PKD.

Publication types

  • Review

MeSH terms

  • Animals
  • Gene Editing / methods
  • Genetic Therapy* / methods
  • Humans
  • Polycystic Kidney Diseases* / genetics
  • Polycystic Kidney Diseases* / therapy
  • TRPP Cation Channels / genetics

Substances

  • TRPP Cation Channels
  • polycystic kidney disease 1 protein