Investigating the hemiretinal asymmetry in emotion processing as a function of spatial frequency

Proc Biol Sci. 2024 Nov;291(2034):20241909. doi: 10.1098/rspb.2024.1909. Epub 2024 Nov 6.

Abstract

The subcortical visual pathway to the amygdala has long been considered a rapid and crude stream for processing emotionally salient information that is reliant on low spatial frequency (LSF) information. Recently, research has called this LSF dependency into question. To resolve this debate, we take advantage of an anatomical hemiretinal asymmetry, whereby the nasal hemiretina sends a higher proportion of information through the subcortical pathway than the temporal hemiretina. We recorded brain activity using electroencephalography (EEG) in human participants (N = 40) while they completed a monocular viewing paradigm. Pairs of faces (one fearful and one neutral, or both neutral) were projected simultaneously to the nasal and temporal hemiretina in three contrast-equated blocks; faces filtered to display only (i) LSF, (ii) high spatial frequency (HSF), or (iii) unfiltered information (broadband spatial frequency; BSF). BSF fearful faces were found to produce a greater naso-temporal asymmetry, with greater N170 amplitudes evoked by BSF faces in the nasal field, compared to HSF faces. Conversely, the naso-temporal asymmetry for LSF fearful faces did not differ between BSF and HSF. Collectively, these findings provide crucial evidence that the subcortical pathway carries combined spatial frequency visual signals, with a potential bias against HSF content.

Keywords: EEG; fearful faces; hemiretina; spatial frequency; subcortical.

MeSH terms

  • Adult
  • Electroencephalography*
  • Emotions*
  • Facial Expression
  • Fear
  • Female
  • Humans
  • Male
  • Photic Stimulation
  • Visual Pathways / physiology
  • Young Adult