'Pokhri mai' refers to the natural pond amidst the hilly forest slopes of the Buxa tiger reserve (BTR) nearby Jayanti considered to be sacred by the local ethnic groups serving as the prime source of water for wild animals and occasionally by neighbouring inhabitants. However, the water body is designated to be noxious by a group of native people with no scientific validation. This paper focuses to explore its toxicity status and allied environmental concerns through Pokhri water and sediment sample analysis through physicochemical assessment, in vitro antioxidant assay, microbiological investigation followed by AAS, GC-MS and in silico study. pH of soil and water samples were found to be quite high (>6.8) with organic matter, carbon and available nitrogen content being 1.5308 ± 0.28 %, 0.89 ± 0.17 % and 0.072 ± 0.34 % respectively. Profuse microbial growths were observed in both sediment and water samples with consortia obtained exhibiting tolerance against a range of antifungals and antibiotics. Inhibition zone was absent for sediment consortium whereas consortium of water samples portrayed susceptibility against various heavy metals viz. Cu2+, Pb2+, Zn2+, Fe3+ and Al3+ salts with corresponding AAS quantified values of sediment samples being 133, 223.3, 86.8, 1449 and 481.5 ppm. A summative of 18 metabolites were identified by GC-MS in Pokhri lake sediment among which 13 (occupying 96.35 % peak area) were investigated to be potentially toxic with 2,4-Di-tert-butylphenol (53.38 %) as the major compound. Biomolecular characterization, ADMET test and molecular docking study with dermal, gastrointestinal and neural peptides exhibiting high binding affinity scores (ranging between -2.6 to -8.3 kcal/mol) further affirmed the toxicity attributes of the GC-MS deciphered molecules. The findings clearly justifies the local 'myth' of Pokhri water to be deleterious with prospective dermatotoxic, neurotoxic and being evident of gastrointestinal toxicity emphasizing ecological risk to the environment, wildlife and microflora of the adjoining forests.
Keywords: AAS; GC–MS; In silico; In vitro; Pokhri mai; Toxicity.
Copyright © 2024. Published by Elsevier B.V.