Polarization-insensitive optical coherence tomography using pseudo-depolarized reference light for mitigating birefringence-related image artifacts

J Biomed Opt. 2024 Nov;29(11):116001. doi: 10.1117/1.JBO.29.11.116001. Epub 2024 Nov 4.

Abstract

Significance: Optical coherence tomography (OCT) images are prone to image artifacts due to the birefringence of the sample or the optical system when a polarized light source is used for imaging. These artifacts can lead to degraded image quality and diagnostic information.

Aim: We aim to mitigate these birefringence-related artifacts in OCT images by adding a depolarizer module in the reference arm of the interferometer.

Approach: We investigated different configurations of liquid crystal patterned retarders as pseudo-depolarizers in the reference arm of OCT setups. We identified the most effective depolarization module layout for polarization artifact suppression for a spectral-domain OCT system based on a Michelson and a Mach-Zehnder interferometer.

Results: The performance of our approach was demonstrated in an achromatic quarter-wave plate allowing the selection of a variety of sample polarization states. A substantial improvement of the OCT signal magnitude was observed after placing the optimal depolarizer configuration, reducing the cross-polarization artifact from 5.7 to 1.8 dB and from 8.0 to 1.0 dB below the co-polarized signal for the fiber-based Michelson and Mach-Zehnder setup, respectively. An imaging experiment in the birefringent scleral tissue of a post-mortem alpine marmot eye and a mouse tail specimen further showcased a significant improvement in the detected signal intensity and an enhanced OCT image quality followed by a drastic elimination of the birefringence-related artifacts.

Conclusions: Our study presents a simple yet cost-effective technique to mitigate birefringence-related artifacts in OCT imaging. This method can be readily implemented in existing OCT technology and improve the effectiveness of various OCT imaging applications in biomedicine.

Keywords: birefringence; optical coherence tomography; polarization; polarization artifacts.

MeSH terms

  • Animals
  • Artifacts*
  • Birefringence
  • Equipment Design
  • Image Processing, Computer-Assisted / methods
  • Interferometry / instrumentation
  • Interferometry / methods
  • Mice
  • Tomography, Optical Coherence* / instrumentation
  • Tomography, Optical Coherence* / methods