Warm growing season activates microbial nutrient cycling to promote fertilizer nitrogen uptake by maize

Microbiol Res. 2024 Oct 20:290:127936. doi: 10.1016/j.micres.2024.127936. Online ahead of print.

Abstract

The influence of nitrogen (N) inputs on soil microbial communities and N uptake by plants is well-documented. Seasonal variations further impact these microbial communities and their nutrient-cycling functions, particularly within multiple cropping systems. Nevertheless, the combined effects of N fertilization and growing seasons on soil microbial communities and plant N uptake remain ambiguous, thereby constraining our comprehension of the optimal growing season for maximizing crop production. In this study, we employed 15N isotope labeling, high-throughput sequencing, and quantitative polymerase chain reaction (qPCR) techniques to investigate the effects of two distinct growing seasons on microbial communities and maize 15N uptake ratios (15NUR). Our results showed that the warm growing season (26.6 °C) increased microbial diversity, reduced network complexity but enhanced stability, decreased microbial associations, and increased modularization compared to the cool growing season (23.1 °C). Additionally, the warm growing season favored oligotrophic species and increased the abundance of microbial guilds and functional genes related to N, phosphorus, and sulfur cycling. Furthermore, alterations in the characteristics of soil microbial keystone taxa were closely linked to variations in maize 15NUR. Overall, our findings demonstrate significant seasonal variations in soil microbial diversity and functioning, with maize exhibiting higher 15NUR during the warm growing season of the double cropping system.

Keywords: Co-occurrence network; Functional gene; Guild; Keystone taxa; Microbial community structure; Stochastic process.