Design and computational analysis of a novel Azurin-BR2 chimeric protein against breast cancer

Toxicol Res (Camb). 2024 Nov 5;13(6):tfae179. doi: 10.1093/toxres/tfae179. eCollection 2024 Dec.

Abstract

Cancer is one of most lethal diseases worldwide. Chemotherapeutics and surgeries are among the treatment facilities available for curing cancer. However due to their negative impact on normal cells and drug resistance development, new treatment strategies have yet to be developed. Some microbial products exhibit therapeutic potential for treating cancer. Pseudomonas aeruginosa Azurins have shown anticancer effects against breast cancer without affecting normal cells. To enhance its cytotoxic effect and targeted delivery, we fused Azurin with a cell-penetrating peptide (BR2) through a rigid linker and evaluated its anticancer potential via in silico analysis. The prediction of the secondary and the tertiary structures and analysis of physiochemical properties of chimeric proteins were computationally performed. The Azurin-BR2 chimeric protein has a basic nature with a molecular weight of 16.8 kDa. The quality indices and validation of chimeric proteins were performed with ERRAT2 and Ramachandran plot values, respectively. The quality index of the chimeric protein was predicted to be 81% to 84.6%, and residues residing in the most favoured region were identified. The HDOCK bioinformatics tool was used for docking a chimeric protein with a cancer suppressor protein p53. The results of the current study support that an Azurin-BR2 fusion protein has a high binding affinity for p53 can induce apoptosis in cancerous cells, and can be used in tumor-targeting therapy.

Keywords: Azurin; Pseudomonas aeruginosa; molecular docking; anticancer fusion protein; breast cancer; cell penetrating peptide.