Macrophage foam cell-derived mediator promotes spontaneous fat lipolysis in atherosclerosis models

J Leukoc Biol. 2024 Nov 7:qiae210. doi: 10.1093/jleuko/qiae210. Online ahead of print.

Abstract

Ectopic lipid accumulation in macrophages is responsible for the formation of macrophage foam cells (MFCs) which are involved in the crosstalk with the perivascular adipose tissue (PVAT) of the vascular wall that plays a pivotal role in the progression of atherosclerosis. However, the interrelationship between MFCs and PVAT implementing adipocyte dysfunction during atherosclerosis has not yet been established. We hypothesized that MFC-secreted mediator(s) is causally linked with PVAT dysfunction and the succession of atherosclerosis. To test this hypothesis, MFCs were cocultured with adipocytes, or the conditional media of MFCs (MFC-CM) were exposed to adipocytes and found a significant induction of fat lipolysis in adipocytes. The molecular filtration followed by the high-performance liquid chromatography (HPLC) fractionation and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis of MFC-CM revealed a novel mediator fetuin-A (FetA) that significantly augments toll-like receptor 4 (TLR4)-dependent fat lipolysis in adipocytes. Mechanistically, MFC-derived FetA markedly increased TLR4-dependent c-Jun N-terminal kinases (JNK)/extracellular signal-regulated kinases (ERK) activation that causes spontaneous fat lipolysis implementing adipocyte dysfunction. Thus, the present study provides the first evidence of MFC-derived FetA that induces adipocyte dysfunction by the stimulation of spontaneous fat lipolysis. Therefore, targeting the crosstalk between MFCs and adipocytes could be a newer approach to counter the progression of atherosclerosis.

Keywords: atherosclerosis; fetuin-A; inflammation; lipolysis; macrophage foam cells.

Grants and funding