Characterizing functional DNA damage and response caused by the combination of CHK1 and WEE1 inhibitors in ovarian and breast cancer models

BJC Rep. 2024 Apr 3;2(1):27. doi: 10.1038/s44276-024-00048-8.

Abstract

Background: We proposed to quantify reduction of functional DNA damage response (DDR) mechanisms caused by the combination of CHK1 and WEE1 inhibitors.

Methods: Survival of cells and tumor growth in-vitro and in-vivo caused by the combination of the CHK1 inhibitor SRA737 and the WEE1 inhibitor adavosertib was studied in OVCAR3 and MDA-MB 436 cells. Functional DNA damage was quantified using in vitro cell free DNA assays.

Results: The combination of SRA737 and adavosertib caused significant reduction of survival of cells and DNA damage in-vitro and growth inhibition in-vivo. Studies using functional DDR assays found significant changes in the functional capacity of OVCAR3 but not MDA-MB 436 cells to repair DNA damage using multiple mechanisms including intra strand cross link repair, nucleotide excision repair, homologous recombination and non-homologous end joining. This study, for the first time provides a mechanistic insight into differences in the reduction in functional capacity of cells to repair DNA when exposed to CHK1 and WEE1 inhibitors.

Conclusion: The combination of the CHK1 inhibitor SRA737 and WEE1 inhibitor adavosertib causes growth inhibition in-vitro and in-vivo, but differential functional inhibition of DDR in the models studied.