Background: With advancements in sequencing and mass spectrometry technologies, multiomics data can now be easily acquired for understanding complex biological systems. Nevertheless, substantial challenges remain in determining the association between gene-metabolite pairs due to the nonlinear and multifactorial interactions within cellular networks. The complexity arises from the interplay of multiple genes and metabolites, often involving feedback loops and time-dependent regulatory mechanisms that are not easily captured by traditional analysis methods.
Findings: Here, we introduce Compounds And Transcripts Bridge (abbreviated as CAT Bridge, available at https://catbridge.work), a free user-friendly platform for longitudinal multiomics analysis to efficiently identify transcripts associated with metabolites using time-series omics data. To evaluate the association of gene-metabolite pairs, CAT Bridge is a pioneering work benchmarking a set of statistical methods spanning causality estimation and correlation coefficient calculation for multiomics analysis. Additionally, CAT Bridge features an artificial intelligence agent to assist users interpreting the association results.
Conclusions: We applied CAT Bridge to experimentally obtained Capsicum chinense (chili pepper) and public human and Escherichia coli time-series transcriptome and metabolome datasets. CAT Bridge successfully identified genes involved in the biosynthesis of capsaicin in C. chinense. Furthermore, case study results showed that the convergent cross-mapping method outperforms traditional approaches in longitudinal multiomics analyses. CAT Bridge simplifies access to various established methods for longitudinal multiomics analysis and enables researchers to swiftly identify associated gene-metabolite pairs for further validation.
Keywords: causality; gene–metabolite association; multiomics; time-series data; web server.
© The Author(s) 2024. Published by Oxford University Press GigaScience.