Effect of Interlayer Temperature on Microstructure and Properties of High-Strength Low-Alloy Steel Manufactured Using Submerged-Arc Additive Manufacturing (SAAM)

Materials (Basel). 2024 Nov 3;17(21):5376. doi: 10.3390/ma17215376.

Abstract

Controlled interlayer temperature has a profound impact on both the microstructure and mechanical properties of the deposited components. In this study, thin-walled structures made of high-strength low-alloy steel were fabricated using the submerged-arc additive manufacturing process. The effects of varying temperature on the microstructure and mechanical properties of the components were studied. The results showed that the cooling rate within T8/5 decreased as the interlayer temperature increased, which caused the microstructure to transition from a fine-grained structure dominated by bainitic ferrite and granular bainite to a coarse-grained structure dominated by polygonal ferrite. The measurement of mechanical properties showed that due to the influence of the fine-grained structure, the components with low interlayer temperatures exhibit excellent hardness, high strength, and outstanding ductility and toughness. Furthermore, a faster cooling rate disrupts the stability of carbon diffusion, resulting in the development of increased quantities of residual austenitic films within the components with controlled low interlayer temperatures. This augmentation in residual austenite films strengthens the components' ductility and toughness, enabling the deposited components to exhibit exceptional impact toughness in low-temperature environments.

Keywords: SAAM; interlayer temperature; mechanical properties; microstructure.

Grants and funding

This research received no external funding.