Lightweight Advanced Deep Neural Network (DNN) Model for Early-Stage Lung Cancer Detection

Diagnostics (Basel). 2024 Oct 22;14(21):2356. doi: 10.3390/diagnostics14212356.

Abstract

Background: Lung cancer, also known as lung carcinoma, has a high mortality rate; however, an early prediction helps to reduce the risk. In the current literature, various approaches have been developed for the prediction of lung carcinoma (at an early stage), but these still have various issues, such as low accuracy, high noise, low contrast, poor recognition rates, and a high false-positive rate, etc. Thus, in this research effort, we have proposed an advanced algorithm and combined two different types of deep neural networks to make it easier to spot lung melanoma in the early phases. Methods: We have used WDSI (weakly supervised dense instance-level lung segmentation) for laborious pixel-level annotations. In addition, we suggested an SS-CL (deep continuous learning-based deep neural network) that can be applied to the labeled and unlabeled data to improve efficiency. This work intends to evaluate potential lightweight, low-memory deep neural net (DNN) designs for image processing. Results: Our experimental results show that, by combining WDSI and LSO segmentation, we can achieve super-sensitive, specific, and accurate early detection of lung cancer. For experiments, we used the lung nodule (LUNA16) dataset, which consists of the patients' 3D CT scan images. We confirmed that our proposed model is lightweight because it uses less memory. We have compared them with state-of-the-art models named PSNR and SSIM. The efficiency is 32.8% and 0.97, respectively. The proposed lightweight deep neural network (DNN) model archives a high accuracy of 98.2% and also removes noise more effectively. Conclusions: Our proposed approach has a lot of potential to help medical image analysis to help improve the accuracy of test results, and it may also prove helpful in saving patients' lives.

Keywords: CT image; convolutional neural networks; deep learning; image classification; lung cancer; lung carcinoma.

Grants and funding

The authors declare that this work received no funding.