Radiotherapy combined with a radiosensitizer represents an important treatment for head and neck squamous cell carcinoma (HNSCC). Only a few chemotherapy agents are currently approved as radiosensitizers for targeted therapy. Oral squamous cell carcinoma is one of the deadliest cancers, with approximately ~500,000 new diagnosed cases and 145,000 deaths worldwide per year. The incidence of new cases continues to increase in developing countries. This study aimed to investigate the effect of Croton tonkinensis and Curcuma longa on cell viability in OSCC cells. The HNSCC cell line OML1 and its radiation-resistant clone OML1-R were used. The anticancer effect and the mechanism of action of Croton tonkinensis and Curcuma longa in OSCC cells were analyzed by using cell viability assays, Western blot analysis, and Tranwell migration assays. The results showed that Croton tonkinensis concentration-dependently reduced the viability of OML1 and OML1-R (radioresistant) cells by downregulating the levels of AKT/mTOR mediators, such as p110α, p85, pAKT (ser473), p-mTOR (ser2448), and p-S6 Ribosomal (ser235/236). We found that cotreatment of OML1 and OML1R cells with either zVAD-FMK (apoptosis inhibitor), Ferrostatin-1 (Fer-1, a ferroptosis inhibitor), or chloroquine (CQ, an autophagy inhibitor) markedly reduced cell death. These results demonstrate that Croton tonkinensis exhibits anti-proliferation activity and highlight the therapeutic potential of small-molecule inhibitors against PI3K/mTOR signaling for radiosensitization in HNC treatment.
Keywords: Croton tonkinensis; Curcuma longa; natural sources; oral squamous cell carcinoma (OSCC); radiosensitization.