A New Proton Transfer Complex Between 3,4-Diaminopyridine Drug and 2,6-Dichloro-4-nitrophenol: Synthesis, Spectroscopic Characterization, DFT Studies, DNA Binding Analysis, and Antitumor Activity

Molecules. 2024 Oct 30;29(21):5120. doi: 10.3390/molecules29215120.

Abstract

The proton transfer (PT) complexation reaction between 3,4-diaminopyridine (3,4-DAP), an important drug, and 2,6-dichloro-4-nitrphenole (DCNP) was investigated experimentally and theoretically. The experimental results indicated a chemical reaction occurred because of a hydrogen bonding, followed by proton transfer from the DCNP to the 3,4-DAP in different polar media. The Benesi-Hildebrand equation was used to estimate the formation constant (Kf), molar absorptivity (εPT), and other physical parameters. The formed PT complex was characterized using FTIR, 1H, and 13C NMR spectra. In addition, the nanocrystalline structure, particle sizes, and surface morphology of the complex were investigated by XRD and SEM-EDX. The structure of the 1:1 PT complex was calculated theoretically in the gas phase and the presence of solvent effects. Using TD-DFT calculations, the band observed at 406 nm (Calc. 379.5 nm) and 275 nm (Calc. 272.3 nm) could be assigned to the HOMO→LUMO transition (99%), and HOMO→L+3 transition (87%), respectively. The DNA binding ability of the PT complex was investigated, revealing an intercalative binding mechanism with a binding constant Kb of 4.6 × 104 M-1. Based on the results of the Ct-DNA binding study, the binding free energy of the PT complex with the receptor of human DNA (PDB ID:1BNA) is found to be -7.2 kcal/mol. The cytotoxic effects of the PT complex were evaluated on selected cancer cell lines, demonstrating significant antitumor activity against A-549 and MCF-7 cancer cell lines.

Keywords: 3,4-diaminopyridine; DNA binding; HOMO and LUMO; MEP; TD-DFT; cytotoxicity; nitrophenol; optimized geometry; proton transfer.

MeSH terms

  • Antineoplastic Agents* / chemical synthesis
  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Cell Line, Tumor
  • DNA* / chemistry
  • Density Functional Theory
  • Humans
  • Hydrogen Bonding
  • Protons*

Substances

  • Antineoplastic Agents
  • DNA
  • Protons