Intrinsically disordered proteins (IDPs) lack a stable three-dimensional structure under physiological conditions, challenging traditional structure-based prediction methods. This review explores how modern deep learning approaches, which have revolutionized structure prediction for globular proteins, have impacted protein disorder predictions. We highlight the role of community-driven efforts in curating data and assessing state-of-the-art, which have been crucial in advancing the field. We also review state-of-the-art methods utilizing deep learning techniques, highlighting innovative approaches. We also address advancements in characterizing protein conformational ensembles directly from sequence data using novel machine learning methods.
Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.