In-vitro Detection of Intramammary-like Macrocalcifications Using Susceptibility-weighted MR Imaging Techniques at 1.5T

Magn Reson Med Sci. 2024 Nov 9. doi: 10.2463/mrms.mp.2024-0075. Online ahead of print.

Abstract

Purpose: The aim of our study was to investigate the technical accuracy of susceptibility-weighted imaging (SWI) and quantitative susceptibility mapping (QSM) created to detect intramammary-like calcifications depending on different TEs, volume, and type of calcification samples at 1.5T.

Methods: Jello-embedded particles of blackboard chalk and ostrich eggshell ranging in size from 4 to 25 mm2 were used to simulate intramammary calcifications after testing different base substances and calcifications for their suitability to be used in breast phantoms. Breast phantoms were systematically examined using CT and an optimized 3D multi-echo gradient echo pulse sequence with following parameters: TR/TE, 22/1.88-15.52 ms in 1.24 ms increments; reconstructed voxel, 0.5 × 0.5 × 1.1 mm3; receiver bandwidth, 1120 Hz/Px; flip angle, 15°; integrated parallel imaging technique with a GeneRalized Autocalibrating Partial Parallel Acquisition (GRAPPA) factor of 2/24; and a total acquisition time of 3:00 min. A qualitative evaluation of the dependence of the visualization of calcification samples on volume and TE value was followed by a calculation of the SNR, the contrast-to-noise ratio (CNR) and the creation of SWI and QSM in the sense of a (semi)-quantitative analysis of the images.

Results: Jello proved to be a suitable base substance for preparing breast phantoms for SW MRI. Blackboard chalk and ostrich eggshell proved to be suitable for mimicking intramammary-like calcifications. The decrease in the median SNR of the blackboard chalk samples was significantly higher than the corresponding value of the ostrich eggshell samples over the entire TE range (47.5 to 17.0 vs. 16.0 to 6.56, P < 0.0001). The increase in the median CNR of the blackboard chalk samples was significantly higher than the corresponding value of the ostrich eggshell samples over the entire TE range (2.46 to 35.0 vs. 20.2 to 36.8, P = 0.007). With increasing TE value, the signal void volume of the calcification particle increases in the magnitude images as well as in SWI and QSM. Due to the blooming effect, the median gradients of the TE-based changes in signal void volumes were higher in SWI than in magnitude images and in QSM, regardless of the type of calcification particle examined. The maximum magnetic susceptibility of ostrich eggshell samples varied in a TE range of 1.88 to 15.52 ms from -7.2 to -2.51 ppm and that of blackboard chalk from -2.0 to -1.7 ppm. Compared to the manually measured volumes of the calcification particles, both MR-based measurements and CT examinations overestimated the actual sample size. The (non)-significant overestimation in the MRI-data is dependent on the set TE. The CT-based hyperdense volumes were overestimated compared to the corresponding manually measured sample volumes in a range of 109.8%-315.2% for ostrich eggshell samples (P = 0.016) and in a range of 39.9%-156.4% for blackboard chalk samples (P = 0.69).

Conclusion: Our systematic in-vitro investigation of magnitude images, SWI, and QSM revealed that various set TE values, different volumes, and compositions of calcifications have a significant impact on visualizing intramammary(-like) calcifications.

Keywords: breast phantom; computed tomography; intramammary-like macrocalcifications; quantitative susceptibility mapping; susceptibility-weighted magnetic resonance imaging.