Generation, manipulation, detection and biomedical applications of magnetic droplets in microfluidic chips

Analyst. 2024 Nov 11. doi: 10.1039/d4an01175a. Online ahead of print.

Abstract

Microfluidic systems incorporating magnetic droplets have emerged as a focal point of significant interest within the biomedical domain. The allure of these systems lies in their capacity to offer precise control, enable contactless operation, and accommodate minimal sample concentration requirements. Such remarkable features serve to mitigate errors arising from human operation and other factors during cell or molecular detection. By providing innovative solutions for molecular diagnostics and immunoassay applications, magnetic droplet microfluidics enhance the accuracy and efficiency of these procedures. This review undertakes a comprehensive examination of the research progress in microfluidic systems centered around magnetic droplets. It adheres to a sequential presentation approach, commencing from the fundamental operation principles, specifically the generation of magnetic droplets on the microfluidic chip, and proceeding to their transmission and mixing within the microchannel via an array of operating techniques. Additionally, the relevant detection technologies associated with magnetic drop microfluidics and their numerous applications within the biomedical field are systematically classified and reviewed. The overarching objective of this review is to spotlight key advancements and offer valuable insights into the future trajectory of this burgeoning field.

Publication types

  • Review