The recent outbreak of monkeypox virus (MPXV) has caused global concern. How the virus evades the interferon (IFN) response is still poorly understood. We analyzed type I/II IFN (IFN-I/II) expression in clinical samples from MPXV-infected patients and measured IFN-I kinetics in MPXV-infected cells. We also evaluated the anti-MPXV activity of IFN-I/II in A549, HeLa and Vero-E6 cell lines. IFN-I/II mRNA expression was detected in skin lesions, anal swabs, nasopharyngeal samples and peripheral blood mononuclear cells (PBMC), with the highest levels in skin lesions (p < 0.05). High MPXV DNA levels in clinical samples were associated with increased IFN-I levels. In vitro, MPXV infection induced a peak of IFN-I between 48 and 72 h post-infection (p < 0.01). Pre-treatment of the A549, HeLa and Vero-E6 cells with high concentrations (≥ 100,000 International Unit, IU/ml) of IFN-α and IFN-ω did not inhibit or had little effect on MPXV replication, while IFN-β moderately reduced MPXV replication by 2.7-1.5 log10 at 100,000 IU/ml. In clinical samples there was a trend for elevated levels of IFN-γ in association with lower MPXV load and in vitro IFN-γ (3,600 IU/ml) strongly reduced viral titers by 3.4-1.6 log10. There were no significant differences in expression of select IFN-stimulated genes (ISGs) in MPXV infection in vitro. This study shows that MPXV delays IFN-I induction and inhibits expression of selected ISGs in vitro and is associated with an IFN-I resistance phenotype in vivo. However, MPXV is less resistant to IFN-γ in vivo and is sensitive to IFN-γ treatment in vitro, suggesting a potential therapeutic role for IFN-γ.
Keywords: IDO; IFN-γ; ISG; Innate immunity; Monkeypox virus; Type I IFN.
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.