Selective transmission of airborne bacterial communities from the ocean to the atmosphere over the Northern Pacific Ocean

Sci Total Environ. 2024 Dec 20:957:177462. doi: 10.1016/j.scitotenv.2024.177462. Epub 2024 Nov 15.

Abstract

This study simultaneously measured the taxonomic diversity of bacterial communities in both seawater and PM2.5 aerosol samples collected from the Northern Pacific Ocean during a cruise covering 7724 km between 37°N 126°E and 58°N 179°E. The relative abundance of Proteobacteria, Cyanobacteria, and Firmicutes were found to be more prevalent in aerosol samples (39 ± 16 %, 5.1 ± 1.9 %, and 3.2 ± 1.7 %, respectively) than in seawater samples (26 ± 9 %, 3.8 ± 1.7 %, and 0.02 ± 0.09 %, respectively). The preferential aerosolization of bacterial communities such as Proteobacteria and Firmicutes was likely to be accompanied by a terrestrial origin and high hydrophobicity. Cyanobacteria could undergo increased aerosolization, possibly because of their smaller size in the significantly higher salinity open ocean (32.8 ± 0.14 PSU) compared to those in lower salinity coastal areas (31.3 ± 1.4 PSU). The results of this study indicated that bacterial properties substantially affect their transfer from the ocean to the atmosphere, possibly influencing climate change and public health.

Keywords: Aerosolization mechanisms; Atmospheric microbial ecology; Bioaerosols; Ocean-atmosphere interaction; Taxonomic diversity.

MeSH terms

  • Aerosols / analysis
  • Air Microbiology*
  • Atmosphere / chemistry
  • Bacteria* / classification
  • Environmental Monitoring
  • Pacific Ocean
  • Seawater* / microbiology

Substances

  • Aerosols